Infrastructure Investment and Jobs Act (IIJA) – Mines & Metals Capacity Expansion – Piloting Byproduct Critical Minerals and Materials Recovery at Domestic Industrial Facilities (DE-FOA-0003583)

Executive Summary:

The U.S. Department of Energy’s Office of Fossil Energy and Carbon Management, through NETL, is offering up to $275 million under DE-FOA-0003583 to fund large pilot facilities that recover byproduct critical materials from coal-based and other industrial feedstocks, mine waste, and process wastes. Projects will design, construct, and operate 1:50-scale or larger pilots that produce market-ready critical material products and generate the data needed for near-term commercial facilities in the United States. Applications are due December 15, 2025, at 5:00 pm EST.

Complimentary Assessment

How much funding would I receive?

For this NOFO, funding is structured by topic area:

  • Topic Area 1 – Mines & Metals Pilots – Coal-Based Industry

    • Total funding: up to $75 million.

    • Approximate number of awards: 0–3.

    • Approximate award size: $10 million–$50 million per project.

    • Minimum cost share: 20% of total project costs.

    • Approximate project period: 48 months.

  • Topic Area 2 – Mines & Metals Pilots – All Industries

    • Total funding: up to $200 million.

    • Approximate number of awards: 0–10.

    • Approximate award size: $10 million–$75 million per project.

    • Minimum cost share: 20% of total project costs.

    • Approximate project period: up to 48 months.

Actual award sizes and number of awards will depend on appropriations, application quality, and DOE priorities.

What could I use the funding for?

Program Goals and Objectives:

This NOFO invests in American industrial facilities that have the potential to produce valuable critical materials from existing industrial processes and legacy waste streams. Industries such as mining and mineral processing, power generation, coal, oil and gas, specialty metals, and basic materials have the potential to recover valuable materials that will address many of America’s most severe mineral vulnerabilities. The goal of this NOFO is to increase domestic critical material production.

American industrial facilities have enormous potential to recover valuable mineral coproducts and byproducts from ongoing operations and legacy waste streams such as mine tailings, impoundments, and coal ash. To de-risk industry investments, the technology for recovering these materials must be piloted under real-world conditions and at a scale relevant to each industry.

This NOFO will support the design, construction, and operation of large (1:50 scale or larger), ‘right-sized’ pilot processing systems at domestic industrial facilities. Successful pilots may produce a wide variety of critical material products, including oxides, salts, metals, alloys, and non-critical material value-added products.

DOE envisions that the large pilots will generate critical information resulting in near-term commercial project viability. Successful pilots will reduce technical uncertainty and financial risk prior to commercial deployment. Should funding and DOE goals align, NOFO award recipients may be considered eligible for possible follow-on scale-up funding opportunities, should DOE pursue such ventures.

Expected Performance Goals:

Performers will design, construct, and operate large pilot facilities (1:50 scale or larger) to produce critical materials necessary for our energy, defense, and economic security and to de-risk commercial scale production technologies to grow new economic and manufacturing opportunities.

Projects will produce qualified market-ready critical material products and other value-added materials with potential offtake agreements. Projects will show they are on track to meet their pilot objectives by producing defined quantities of critical materials at the proposed scales in each phase, subject to evaluation through go/no-go milestones. In addition, projects will generate the critically needed information and operational data required for the development of a near-term commercial facility within the U.S.

Two topic areas are defined based on eligible feedstock and the technology readiness level (TRL). See the attached Technology Readiness Level Reference for TRL definitions.

  • Small pilot-scale facilities (TRL 5) that have demonstrated the capabilities of producing REE and other critical materials from coal-based resources shall be scaled for design, construction, and operation as large, ‘right-sized’ pilot-scale facilities (TRL 7) for the production of market-ready REE and other critical materials, and for generation of critically essential design information and operational data necessary for near-term, future operation of a commercial processing facility (TRL 8) by no later than 2030.

    Topic Area 1 requires the use of coal and coal byproducts as feedstocks with minor or limited emphasis on the use of other (non-coal) industrial-based mining materials. Domestic coal-based feedstock materials (e.g., lignite, refuse tailings, etc.) and/or industrial coal-based wastes (e.g., prep plant wastes, power generation fly/bottom ash, coal-based AMD, etc.) shall be utilized. REE recovery is the required focus of Topic Area 1, preferably with co-recovery of other critical materials and other value-added materials; Critical materials recovery without REE recovery and other value-added material production without REE recovery are not of interest.

  • This topic area broadly supports piloting the recovery of valuable critical material byproducts and other value-added products from industrial feedstocks, processes, and process wastes including mine waste. Example projects in Topic Area 2 could include critical material recovery from bauxite residue processing, valorization of zinc processing byproducts (e.g., indium from zinc smelting), and valorization of numerous critical materials from ongoing processing of titanium, phosphorous, lead, oil & gas or other industry wastes or production processes. Impounded or stockpiled waste materials are in scope. Modular, mobile, or fixed sites are in scope.

    In Topic Area 2, the applicant will establish large, pilot-scale facilities for production of valuable critical material byproducts from industry operations and/or wastes at the specific TRL ranges described in the subtopics below. These facilities will generate data and information needed for validation of future, near-term domestic commercial production of market-ready critical materials.

    Topic Area 2 requires the use of feedstocks from industrial feedstocks, processes, or process wastes including mine waste. For example, this may include (1) residual material from processing; (2) process streams, process byproducts, secondary materials, and/or waste materials that are produced by industry’s production; or (3) conventional ore (including monazite, bastnaesite, and/or other domestically mined materials) processing waste or waste materials such as residues, slimes, or below-cutoff grade ore or other mined material.

    Feedstocks for Topic Area 2 can come from all industry sources other than coal-based industry and feedstock materials related to post-consumer and manufacturing scrap recycling.

    Subtopic 2a: Mines & Metals Pilots—All Industries—Prior Bench-Scale Facilities

    Subtopic 2a is focused on industrial processes for critical materials recovery that have been developed at a bench-scale TRL of 4 or 5. The objective of Subtopic 2a is to accelerate technology development that leverages industry’s existing bench-scale (TRL 4) or small pilot-scale (TRL 5) process design concepts and scales those processes or systems for design, construction, and operation of a large, ‘right-sized’ pilot-scale facility (TRL 7).

    Subtopic 2b: Mines & Metals Pilots—All Industries—Prior Pilot-Scale Facilities

    Subtopic 2b is focused on industrial processes for critical materials recovery that have been developed at a pilot-scale TRL of 6 or 7 (7 preferred). The objective of Subtopic 2b is to accelerate technology development that leverages industry’s existing pilot-scale facility (TRL 6 or 7, 7 preferred) process design concepts and scales those processes or systems for design, construction, and operation of a large, ‘right-sized’ pilot-scale mineral production facility (TRL 7 or 8, 8 preferred).aterial byproducts and other value-added products from industrial feedstocks, processes, and process wastes including mine waste. Feedstocks for Topic Area 2 can come from all industry sources other than coal-based industry and feedstock materials related to post-consumer and manufacturing scrap recycling.

    Previously developed bench-scale efforts identified for Subtopic 2a are expected to advance the TRL of their process/system from 4 or 5 to 7. Previously developed pilot-scale efforts identified for Subtopic 2b are expected to advance the TRL of their process/system from 6 or 7 to 7 or 8.

    Applications to Topic Area 2 can recover any critical material.

  • The following information applies to all Topic Areas and Subtopics.

    The overall objective is to design, construct, and operate large pilot critical material production facilities (1:50 scale or larger) in the U.S. that will produce critical material byproducts from industrial processes. These pilots will deliver critical data needed for near-term commercial scale-up by using real-world industrial feedstocks and materials for verification and validation of the commercial potential of their processes/system, including, but not limited to:

    • data on the performance of individual processing circuits/systems and their overall integration,

    • process models,

    • capital and operating costs,

    • scaling factors, and

    • feedstock and end-product characterization

    Critical Material Byproduct Targets at Domestic Industrial Sites

    Applications must focus on the development of fully operational processing systems, located at and integrated with a domestic industrial site, that will be operated in a continuous/semi-continuous manner to produce market-ready critical materials. DOE Critical Materials include all minerals on the U.S. Geological Survey (USGS) List of Critical Minerals plus additional materials for energy. It is within scope to produce any market-ready critical material including critical material concentrates, high purity materials, or material commodities such as mixed oxides, salts, alloys, etc.

    Applicants are encouraged to consider production of materials that support both energy security and national defense needs. Applicants are also encouraged to reference the DOE Critical Materials List12 and USGS 2025 Mineral Commodity Summaries Report.13 Of particular interest are the production of critical materials with low or zero current domestic production. Critical materials with limited domestic production include arsenic, antimony, bismuth, chromium, fluorine, gallium, germanium, graphite, indium, manganese, magnesium, niobium, scandium, tantalum, tin, tungsten, rare earth elements, and yttrium.

    Large Pilot-Scale Facility Size and Operational Information

    The large (1:50 scale or larger) pilot-scale systems of interest in this NOFO should be ‘right-sized’ to demonstrate production of critical materials in quantity and purity specifications to support and establish the basis for near-term commercial production of saleable critical materials. The ’right-sized’, large pilot must have a critical material production capacity target of at least 2% (1:50 scale) of a commercial-scale system. For example, if the targeted critical material production of a large pilot-scale facility is 25 metric tons per year (tpy), and it is identified that commercial-scale systems for that targeted material generally produce 300 tpy, then the large pilot-scale facility would produce 25/300 = 8.3% of a commercial-scale system.

    Feedstock and Byproduct Critical Material Target

    The intent is to pilot potential byproduct material valorization at industrial sites including ongoing industrial production streams and waste impounded at active sites or sites of former industrial activity. The use of domestic feedstocks is preferred. Any feedstock located within the U.S. is considered domestic regardless of its original source. For example, mine waste at a U.S. facility that was originally mined from foreign territory is considered a domestic feedstock. No federal funding can be used to procure foreign feedstock.

    Applications proposing feedstock materials related to post-consumer and manufacturing scrap recycling are specifically not of interest.

    Applicants must identify the feedstock and quantify the feedstock throughput and critical material production, in terms of metric tons per year, that:

    • has been successfully demonstrated in their existing bench-scale or pilot-scale system on actual (non-simulated) feedstocks,

    • is targeted for their proposed large pilot-scale facility,

    • is generally targeted in ideal commercial-scale systems, and

    • is targeted for future commercial-scale operation at the site.

    Applicants must state the purity specification of the commercial market-ready critical materials to be produced. The large pilot projects must aim to meet specific quantity and purity standards for the critical material(s) produced or explain why that is not technically, operationally, or economically feasible or appropriate for this project.

    In addition, applicants must describe the overall impact of the large pilot-scale system, as well as a potential future commercial-scale system, on the foreign import reliance for each critical material produced. For example, the large pilot-scale system may reduce import reliance of a specific critical material from 90% to possibly 85% and a future commercial-scale system may further reduce the import reliance to possibly 50%.

    Projects must utilize feedstock materials that are sufficiently abundant to support the awarded project and maintain future pilot operational capacity for a minimum of five years. Applicants must provide evidence of material availability in the quantity needed to fulfill this 5-year requirement. A letter of support should be included in the application from all companies, agencies, or other parties that have ownership/rights to any proposed feedstock materials to allow large pilot-scale facility operation for the performance of the award (e.g., if utilizing coal ash, please provide a letter of support from the power or coal company who is producing the ash). If no letters of support can be obtained, applicants must provide an explanation in the Technical Volume as to why they are not necessary, or how the necessary feedstock is intended to be obtained.

    Large pilot-scale facilities are encouraged to exhibit feedstock flexibility, enabling them to process multiple feedstock types (e.g., bauxite red mud, kaolinite clay, and/or phosphate wastes) within the same facility, though not necessarily concurrently. Strategies that bolster pilot facility resilience by processing diverse feedstocks or offering modularity or mobility are particularly encouraged. Pilot production of multiple critical materials is also encouraged.

    Facility Technical Feasibility and Prior Work

    Applicants are required to:

    • Provide information that demonstrates the technical feasibility of their existing technology for processing the proposed feedstock to produce the critical material(s) of interest at their application’s starting TRL. Actual (non-simulated) feedstock materials must have been used with processes operated in a continuous/semi-continuous manner.

    • Submit photographs of existing systems to demonstrate existing process scale and capabilities.

    • Provide an estimate of the time to acquire any required site permits and time for construction. These estimates will be revised with actual timelines during project execution.

    Applicants should include information relevant to costing, such as Feasibility Studies (pre-Front End Engineering and Design (FEED) based on an AACE Class 4 Cost Estimate25) in the Application Package. Each large-scale pilot is required to be designed, constructed, and operated in a manner to generate relevant new information to aid future development of a commercial system (TRL 8, FEED Study based on an AACE Class 3 Cost Estimate). Development of a FEED Study for the future commercial system is not within scope of this NOFO.

    Where separation, extraction, and recovery processes have been developed by industry, process flowsheets (to the extent that non-proprietary information can be made available) and critical material recovery performance should be described.

Are there any additional benefits I would receive?

Beyond direct funding, this NOFO offers several strategic advantages for companies advancing large pilot-scale critical mineral recovery technologies:

Market Readiness and Investor Confidence
DOE-supported pilot facilities are positioned as a critical bridge to commercialization. Successfully operating a DOE-funded pilot—using real industrial feedstocks at meaningful scale—signals to customers, strategic partners, and investors that your technology is technically validated, financially de-risked, and ready for larger commercial deployment.

Risk Reduction and Safer Scale-Up
The program is structured to help teams identify technical, operational, and integration risks before committing to full-scale capital build-out. Generating continuous or semi-continuous operational data under DOE oversight gives companies greater certainty around project feasibility, cost structure, and long-term performance.

National-Level Visibility and Ecosystem Access
Participation in a DOE-funded pilot often increases visibility within federal agencies, national labs, and the broader critical minerals sector. Awardees are well-positioned for future federal contracting, R&D collaboration, and follow-on scale-up opportunities—subject to DOE priorities and merit review.

Technology Validation that Strengthens Supply Chain Positioning
Producing tonnage-level critical material outputs under DOE-supported conditions enhances credibility with downstream processors and manufacturers. This validation helps companies form off-take relationships, strategic partnerships, and potential commercial agreements.

Workforce, Skills, and Operational Capabilities
Standing up a pilot facility develops advanced operational expertise within your organization—expertise that becomes a competitive advantage when transitioning to full commercial-scale deployment and building long-term U.S.-based critical materials infrastructure.

Collectively, these benefits reinforce domestic supply chain resilience and strengthen a company’s strategic position in the emerging U.S. critical minerals and materials ecosystem.

What is the timeline to apply and when would I receive funding?

  • Application Deadline: December 15, 2025, 5:00 pm EST

  • Anticipated Selection Notification Date: January 16, 2026

  • Anticipated Conditional Award Date: January 23, 2026

  • Anticipated Award Date: June 15, 2026

  • Estimated Period of Performance: June 15, 2026 – June 14, 2030 (up to ~48 months)

Where does this funding come from?

Funding for DE-FOA-0003583 comes from the Infrastructure Investment and Jobs Act (IIJA), specifically Section 41003(b)-(c), and uses FY 2024–2026 funds. The NOFO is issued by the U.S. Department of Energy, Office of Fossil Energy and Carbon Management (FECM), and administered by the National Energy Technology Laboratory (NETL).

Who is eligible to apply?

The NOFO is open primarily to domestic entities as recipients or subrecipients, including:

  • Institutions of higher education

  • For-profit organizations

  • Nonprofit organizations

  • State and local governmental entities

  • Indian Tribes (as defined in 25 U.S.C. § 5304)

To qualify as a domestic entity, an organization must:

  • Be organized, chartered, incorporated, or otherwise formed under the laws of a U.S. state or territory.

  • Have its principal place of business in the United States.

  • Have majority U.S. ownership and control.

  • Have a physical place of business in the United States.

What companies and projects are likely to win?

Proposals will be scored according to the following criteria:

Scientific and Technical Merit (50%) – Projects that demonstrate strong scientific grounding, a clear understanding of critical materials recovery, a credible pilot concept, and a realistic commercialization pathway. Competitive proposals show how the pilot is “right-sized” for near-term scale-up and may leverage multiple feedstocks or produce multiple critical material products.

Technical Approach (30%) – Proposals with a well-structured SOPO and Project Management Plan, the ability to begin operations quickly, and a clear path to steady-state critical material production. High-scoring projects show meaningful tonnage potential, robust risk mitigation, and a logical workplan tied to impactful commercial outcomes.

Team Capabilities (20%) – Applicants with strong financial stability, the ability to meet the 20% cost share, and demonstrated experience operating pilot facilities or complex processing systems. Competitive teams typically include industry partners, off-take relationships, established roles, and adequate facilities and equipment.

Additional Selection Factors – Projects that diversify feedstocks or regions, contribute meaningfully to the DOE critical materials portfolio, create high-quality U.S. jobs, align with Buy America preferences, and show a credible path to a future commercial facility are more likely to be selected.

Projects that can stand up large, U.S.-based pilot operations and demonstrate a high-confidence pathway to commercial deployment will be the strongest contenders.

Complimentary Assessment

Are there any restrictions I should know about?

DOE anticipates awarding cooperative agreements under this NOFO, which include a statement of DOE’s “substantial involvement” in the work performed under the resulting awards. For cooperative agreements, DOE does not limit its involvement to the administrative requirements of the award. Instead, DOE has substantial involvement in the direction and redirection of the technical aspects of the project. DOE’s substantial involvement in resulting awards may include the following:

A. DOE shares responsibility with the recipient for the management, control, direction, and performance of the project.

B. DOE may intervene in the conduct or performance of work under this award for programmatic reasons. Intervention includes the interruption or modification of the conduct or performance of project activities.

C. DOE may redirect or discontinue funding the project based on the outcome of DOE’s evaluation of the project at the Go/No-Go decision point(s).

D. DOE participates in major project decision-making processes.

How long will it take me to prepare an application?

For a first-time applicant, preparing a competitive submission will likely take 160–200 hours in total.

How can BW&CO help?

Our team specializes in complex federal R&D proposals and can:

  • Triple your likelihood of success through proven strategy and insider-aligned proposal development

  • Reduce your time spent on the proposal by 50–80%, letting your team focus on technology and operations

  • Ensure you are targeting the best opportunity for your project and positioning your company for long-term growth under Federal & State R&D Initiatives.

How much would BW&CO Charge?

Flat Fee + Success Fee rate can be quoted depending on the size of the project.

Fractional support is $300 per hour, with most projects requiring 80–100 hours of expert support from strategy through submission of full proposal.

For startups, we offer a discounted rate of $250 per hour to make top-tier grant consulting more accessible while maintaining the same level of strategic guidance and proposal quality.

Additional Resources

  • See the solicitation here.

Previous
Previous

The National Institutes of Health Small Business Innovation Research Program

Next
Next

Infrastructure Investment and Jobs Act (IIJA) – Mine of the Future – Proving Ground Initiative (DE-FOA-0003390)